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Abstract: Focusing on the traditional kernel principle component analysis (KPCA) can not provide 
principle component information under the condition of multi-resolution, this paper proposes a 
novel multi-resolution kernel principle component analysis (MKPCA) method, by combining 
KPCA with high dimensional multi-resolution analysis theory. MKPCA can explore sample data’s 
characters and principle component information on the different resolution. The experiments 
demonstrate the feasibility of the proposed method. 

1.  Introduction 
Since Spearman proposed the principal component analysis (PCA) method in 1904, it has been 

widely used due to its simplicity and efficiency. The improvement of PCA algorithm is mainly 
classified in two aspects: on one hand, the robustness of PCA has been investigated from different 
perspective, and various improved algorithms are proposed. On the other hand, in the traditional 
PCA algorithm, the principal component is determined only by the second-order statistics of the 
data. For a better description of the non-Gaussian distribution data, Karhunen et.al introduce 
appropriate nonlinear processing based on the known input sample distribution. And they proposed 
some algorithms for nonlinear PCA [1]. The nonlinear PCA algorithm can also be roughly divided 
into two categories. The one category starts from the distribution of samples, and hopes to find a 
probability model that best describes the internal structure of the data, such as independent 
component analysis [2]. The other category is represented by the kernel principal component 
analysis proposed by Scholkopf [3]. 

KPCA introduces a kernel function to obtain any high-order correlation of the input variables, 
and finds the required principal components by the inner product of the input data [4]. In recent 
years it has become one of the research hotspots in the field of machine learning, and has been 
widely used in many domains [5]. In this paper, KPCA is combined with the high-dimensional 
multi-resolution analysis theory in the separable case. Based on this combination, the kernel 
principal component analysis can be performed at the different resolutions, and a multi-resolution 
kernel principal component analysis method is proposed. 

2.  High-dimensional multi-resolution analyses in separable situations 

Taking a two dimensional function as an example, let ( )21 , xxf be a two-dimensional function in 
the ( )22 RL  space. Now, the function space is divided into two parts by the power series 
[ ]zja j ∈= ,2  of the resolution a . The required segmentation meets the following conditions [6]:  

(1) Gradual inclusion:   ( ) ( ) ( ) ( )21
2
121

2 ,, xxVxxV jj +⊃ ;  

(2) Gradual replacement: ( ) ( ) ( ) ( ) ( ) ( )21
2
121

2
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(4) Two scale characteristic:  if ( ) ( )2
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(5) Displacement invariance:  if ( ) ( )2
21 , jVxxf ∈ , then ( ) ( )2

2211 , jVkxkxf ∈−− , ( )2
21 , zkk ∈ . It 

supposes that the two-dimensional space ( ) ( )21
2 , xxV j  can be separable, that is, it can be 

decomposed into the tensor product of two one-dimensional spaces ( ) ( )1
1 xV j  and ( ) ( )2

1 xV j : 

( ) ( ) ( ) ( ) ( ) ( )2
2

1
1

21
2 , xVxVxxV jjj ⊗=  

Let ( )21 , xxφ  and ( )21 , xxψ  be the integer-distributed orthogonal normalized basis of 
( ) ( )21
2

0 , xxV  and ( ) ( )21
2

0 , xxW , then ( )21 , xxφ  must be decomposed into: 

( ) ( ) ( )2121 , xxxx φφφ =  
and ( ) ( ) 1111 kdxkxx dφφ =−∫ , ( ) ( ) 2222 kdxkxx dφφ =−∫ , where ( )2

21 , zkk ∈  
Similarly 
( ) ( ) ( )2121 , xxxx ψψψ =  

and ( ) ( ) 1111 kdxkxx dψψ =−∫ , ( ) ( ) 2222 kdxkxx dψψ =−∫ , where ( )2
21 , zkk ∈ . 

3.  Multi-resolution Kernel Principle Component Analysis 
For the KPCA, the key role is the kernel function. If we use the high-dimensional 

multi-resolution analysis theory to construct a new kernel and replace the existing one, we can 
construct a new principal component analysis method. The proposed MKPCA is based on this idea. 

The kernel function can be divided into two categories, the one is the translation invariant kernel 
and the other is the dot product kernel. Zhang Li used wavelet to construct a kernel function [7]. 
However, the kernel of Zhang is a kind of translation invariant kernel, and its scaling function has 
an explicit expression. In this paper, the wavelet is used to construct a new dot product kernel. 
Considering the scale function does not have an explicit expression, the numerical simulation is 
more difficult than the translation invariant kernel. The construction steps of new kernel are as 
follows: 

Firstly, we construct a one-dimensional kernel based on the Mercer theorem: 
Mercer theorem [8]: Let the symmetric and real-valued functions K  make the integral operator 

( )( ) ( ) ( )∫= dyyfyxKxfTk ,  positive. And let 0>kλ , ( )xkϕ  be the eigenvalues of the integral 

operator ( ) ( )xffTk  and the normalized Eigen functions (it satisfies ( ) ( ) ( )∫ = xdyyyxK kkk ϕλϕ, ). 
The following conclusions are established: 

(1) ∞<kk ϕsup ; 

(2) ( )( )
kkk xx ϕλϕ →: ; 

(3) ( ) ( ) ( )∑=
k

kkk yxyxK ϕϕλ, ; 

Following that, we construct a high-dimensional wavelet kernel based on a one-dimensional 
kernel. If an n -dimensional space ( )nxxxF ,, 21 can be decomposed into tensor products of n
one-dimensional spaces, that is, ( ) ( ) ( ) ( )nn xFxFxFxxxF 

2121 ,, ⊗= , and the kernel defined on 
the i-th one-dimensional space ( )ixF  is ( )ii yxK , . The multi-dimensional kernel defined in the n
-dimensional space can be represented by 

( ) ( )∏
=

=
n

i

ii yxKK
1

,,yx , ( )nxxx ,, 21=x , ( )nyyy ,, 21=y . 
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4.  Numerical experiments 
A toy data set is shown in Fig. 1. The data set consists of three clusters of data, each of which is 

subject to a Gaussian distribution. In the next experiment, it is analyzed by the KPCA and MKPCA 
respectively. The analysis results are shown in Fig. 1 and Fig. 2. The red dots in the figure represent 
data points, and the blue lines represent principle component contours. Comparing Fig. 1 to Fig. 2, 
it is seen that MKPCA can provide principal component information at different resolutions. 

 
Fig. 1 Traditional kernel principal component analysis (KPCA) results 

      
(a)Resolution j=-2                    (b)Resolution j=-1 

      
(c)Resolution j=0                    (d)Resolution j=1 

Fig. 2 Multi-resolution kernel principle component analysis (MKPCA) results 
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5.  Conclusion 
Traditional KPCA can not provide principal component information in multi-resolution 

situations. This paper proposes a novel MKPCA that solves this problem. The experimental results 
verify the feasibility of the proposed method, and output the principal component information under 
the conditions of resolution equal to -2, -1, 0, 1, etc. The next step includes using MKPCA for 
feature extraction in machine learning systems, etc.  
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